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The effect of surface curvature on the development of a two-dimensional wall jet
was investigated experimentally. A comparison was made between a wall jet flowing
around a circular cylinder and its plane equivalent. Velocity surveys and surface
pressure measurements in the curved wall jet suggest the existence of two primary
regions of interest. The first region, ranging from the end of the potential core to
an approximate angular position of θ = 120◦, is characterized by a constant surface
pressure and a self similarity of the mean flow. The second region is marked by an
adverse pressure gradient leading to separation around θ = 230◦. The rate of spread
of this flow, even in the initial region, is much higher than in the plane wall jet and
so are the levels of turbulence and Reynolds stress. The dominant lengthscale in this
flow is the radius of curvature R and the dominant velocity scale is the square root
of the kinematic jet momentum divided by the radius of curvature. Entrainment of
ambient fluid which causes the jet to adhere to the curved surface is also the main
reason for its separation which is preceded by a rapid rate of spread of the flow
leading to the failure of the boundary-layer approximation.

1. Introduction
Wall jets are used to delay boundary-layer separation, to provide supercirculation

on lifting surfaces and to either enhance or suppress convective heat transfer between
a surface and the fluid surrounding it. Probably the most familiar application of a
wall jet is to defrost or demist car windshields; however, its use in cooling turbine
blades or preventing separation over slotted flaps is no less important. In many
applications a jet flows over a curved surface such as a turbine blade or flap. In some
instances curvature is used to generate supercirculation by altering the position of the
rear stagnation point (i.e. the location at which the flow separates from the surface).
Recently, a wall jet flowing over a circular cylinder has replaced the tail rotor used
to prevent the autorotation of a typical helicopter. The NOTAR, as it is called (NO
TAil Rotor), may make a helicopter lighter, safer and quieter.

Some shortcomings in the understanding of the wall jet flowing over a circular
cylinder became apparent during the development of the NOTAR. Early versions
required that fences (similar to boundary-layer fences used on swept-back wings)
be mounted to its boom. These fences generated a large drag force in forward
flight and were later replaced by two blowing slots whose relative location was
determined empirically. This design revision would not have been necessary if the
detailed structure of this important flow had been thoroughly understood.

The purpose of the present investigation is to determine the effects of streamline
curvature on this flow and to assess the causes leading to its separation from the
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surface. The attachment of a jet to an adjacent curved surface was discussed some
two hundred years ago by Young (1800) and patented a century later by Coanda.
It is therefore, widely referred to as the ‘Coanda effect’. Although Rayleigh (1916)
determined the conditions for stability of the curved flow, the effect of streamwise
curvature on the evolution of the wall jet was mostly ignored until 1961 when Newman
published his seminal paper. This was followed by the publications of Fekete (1963),
Guitton (1964), Wilson & Goldstein (1976), Fujisawa & Kobayashi (1987), and others.
It was recognized that streamwise curvature generates an instability in the outer part
of the wall jet affecting the turbulence generation and its transport across the flow.
It was also acknowledged that turbulent equilibrium is unattainable over a circular
cylinder in spite of the apparent self similarity of the mean motion which extends
over most of the attached-flow region. Many of the above mentioned investigations
focused on the comparison between the flow over a plane surface and over a circular
cylinder and attempted to accomplish it on a single experimental facility. For this
reason the jet emerged from a settling chamber exterior to the cylinder (e.g. Fujisawa
& Kobayashi), in most applied systems (e.g. NOTAR or film cooling), however, the jet
emerges from within the cylinder. It was noted that the external settling chamber sets
up an adverse pressure gradient initiating a premature separation of the flow from the
surface. Thus, only an internal settling chamber should be used in an experiment to
study the contribution of streamwise curvature to flow separation. The experimental
facility designed by Newman and Fekete provides such an opportunity. The present
data is compared to measurements made on a plane wall jet by Zhou, Heine and
Wygnanski (1996).

The tests were carried out on a smooth, circular cylinder at slot Reynolds numbers
ranging from 3 × 103 to 13 × 103. Taps drilled through the cylinder walls were used
to provide mean surface pressure data, while velocity measurements were carried out
using hot-wire anemometers.

2. Apparatus and data acquisition
The experiments were carried out on a highly polished, (radius R = 101.6 mm

circular cylinder, made out of a thick aluminium pipe 914.4 mm long that is spliced
along its entire length to provide a nozzle, as shown in figure 1. The interior space of
the cylinder contains the settling chamber, screens, and a contraction through which
the jet emerges tangentially to the exterior surface. The width of the nozzle, b, which
spans the entire cylinder, can be altered by the addition of spacers at the foot of the
upper lip. The initial aspect ratio of the jet varied, therefore, between 130 and 390,
depending on the spacers used. The cylinder was mounted on bearings embedded
inside two large end-plates that allowed rotation around its axis.

The airflow was provided by a centrifugal blower that was powered by a frequency-
controlled a.c. motor. It entered the settling chamber through both ends of the
cylinder. Before entering the blower, the air passed through a temperature controlled
chamber equipped with cooling coils and a heater that equated the temperature of the
jet to the ambient air at all speeds considered. The maximum temperature differential
between the two flows did not exceed ±0.5 ◦C.

The hot-wire probe was mounted on a single-axis traverse system in a direction
perpendicular to the surface. A computer-controlled stepper motor was used to
achieve a resolution of 1

630
mm per step. The circumferential distance between the

probe and the nozzle was altered by rotating the cylinder. Movements in the spanwise
direction were accomplished by sliding the traverse on a rail attached to the end-plates
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Figure 1. Cross-section of the apparatus. 1. Upper lip. 2. Air supply. 3. Screens.
4. Tightening screw. 5. Spacer. 6. Plenum chamber.

and located well above the surface of the cylinder. This freedom of movement was
necessary to verify the two-dimensionality of the flow.

The momentum emanating from the nozzle was actually measured by integrating
the velocity profile at the slot exit (figure 2), not relying on the assumption that the
flow at the slot has a ‘top hat’ velocity profile. The calibration yielded:

0.89 < 2ρ

∫ ∞
0

u2 dy/(p0 − p∞) b 6 0.93,

and the results were normalized by the measured jet momentum. Since the hot
wires were calibrated in a separate calibration jet, one could show that the pressure
difference between the settling chamber and the room was less than the dynamic
pressure [i.e. (p0 − p∞) < 1

2
ρU2

jet], suggesting that the flow expands to some local static
pressure, ps, that is lower than atmospheric. However, since all pressure distributions
reported in the literature are normalized by (p0−p∞) and in view of the losses resulting
from the boundary layers (figure 2) which more than offset the gains calculated by
using (p0 − ps) the correction to the kinematic jet momentum, J , was neglected.

The two-dimensionality of the flow was tested at a few distances from the nozzle.
Close to the nozzle exit, the variations in the maximum velocity did not exceed
0.2% of the average value over most of the span (i.e. for spanwise distances ranging
from −2 < z/R < 3).

Cross-wires were calibrated at numerous velocities (up to the maximum velocity
anticipated in the specific test) and yaw angles. The calibration range in yaw was
±42◦. Look-up tables that were created during the calibration procedure were not
only used to convert voltages to velocities but also to check that calibration limits were
not exceeded. Whenever the output voltage of a given wire exceeded its calibration
limit, the event was noted and the total times of such excesses were recorded. This
information provides a good estimate of the accuracy of the data. The instantaneous
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Figure 2. Mean velocity profile at the nozzle.
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Figure 3. Set of instantaneous velocity pairs (U,V ) from a hot-wire signal mapped into the
×-wire calibration domain.

voltage outputs of a pair of wires (in an ×-array) located in the flow are plotted in
figure 3 as an example. The calibration limits of the ×-array are also shown on this
figure. The percentage difference between the total measurement time and the time
spent outside the calibration limits is referred to as the validation ratio rvalid .

Since doubts were cast on the validity of data acquired with a hot wire, some results
were compared to data acquired by a laser-Doppler anemometer (LDA). The profiles
of the streamwise component of velocity and turbulent intensity measured at three
azimuthal locations 60◦, 140◦ and 180◦ are plotted in figure 4. The single wire results
are shown by solid curves whereas symbols describe LDA data. The validation ratio
rvalid that was used for the ×-array is also shown on these figures near the right
ordinate.

The agreement between the two sets of data is very good over most of the
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6 R. Neuendorf and I. Wygnanski

measurement domain. The mean velocities measured by a single wire in the outer
region (y/y2 > 1.5) are generally higher than those measured by the LDA partly
because of the lack of sensitivity of the wire to the flow direction and partly because
of the high turbulence intensity in this region. Velocities measured with an X-array
differed very slightly from the measurements made with a single wire in this region.
It appears that mean velocities measured by hot wires are reliable whenever the
validation ratio exceeds 95% and where the local turbulent intensity is less than 50%.

Wherever the flow was separated even intermittently (i.e. at θ > 200◦) the insensi-
tivity of the hot wire to directional changes resulted in rvalid < 90%, and it increased
the discrepancy between measurements made with an LDA and a hot wire. Intermit-
tent separation affected mostly the measurements of turbulence intensity and not mean
velocity, as the high turbulence intensity did in the outer part of the wall jet. Because of
this uncertainty the results presented and discussed below focus on the region bound
by 40◦ < θ < 200◦. The skin friction estimation was made from the slope of the mean
velocity profile in the immediate vicinity of the wall. Great care, therefore, was exer-
cised to measure (dU/dy) as precisely as possible. A comparison between LDA and
hot-wire data measured in the immediate vicinity of the surface is shown in figure 5
for θ = 60◦ and for 120◦. The comparison between the two sets of results is excel-
lent and would result in identical skin friction coefficient. Consequently, the various
momentum budgets presented below are accurate and reaffirm the two-dimensionality
of the mean flow.

Measurements done with an LDA (and a particle image velocimeter) proved to
be sensitive to the source of the seeding, particularly at small values of θ. Smoke
introduced into the settling chamber biased the mass flow emanating from the nozzle,
whereas smoke introduced to the ambient fluid accentuated the entrained flow. Thus,
the radial velocities measured by tracking the particles could have had an opposite
sign, depending on their origin.

3. The mean velocity profiles
Mean velocity profiles were measured for several jet exit velocities and slot widths,

but only a sample of the data is presented for the sake of clarity. All of the
data discussed initially correspond to a single slot width of 2.34 mm and an exit
velocity of Ujet = 48 m s−1 (see figure 6), and thus a nominal Reynolds number

ReN ≡ ( 1
2
U2
jetbR/ν

2
)1/2

= 33 000 (the reason for the choice of this lengthscale will be
apparent later).

A fully developed velocity profile typical of the wall jet flow was observed for this
case at an angular position θ ≈ 20◦. At much larger slot widths the potential core
might not have terminated at this location and thus, the first mean velocity profile pre-
sented in figure 6 was taken at θ = 40◦. Since the surface pressure is almost constant up
to θ = 120◦, an attempt was made to plot all the velocity profiles in self-similar
coordinates in order to assess the effect of constant curvature on the development of
this flow (figure 6). The mean velocity distribution in the curved wall jet is almost
indistinguishable from the plane wall jet when it is normalized by the local maximum
velocity Umax and the distance from the wall y2 at which the velocity in the outer
part of the flow is equal to 1

2
Umax. The variation of the local length and velocity

scales with distance from the nozzle will be examined later. The average location of
the maximum velocity occurred at y/y2 = 0.16, which agrees with the corresponding
value for the plane wall jet (Wygnanski, Katz & Horev 1992). The absence of a
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Figure 5. A comparison of hot-wire and LDV measurements near the surface at two azimuthal
locations (a) 60◦, (b) 120◦. ◦, LDA; �, single hot wire.

free stream contributes to the scatter in the data at large values of y/y2 where the
direction of the flow is uncertain and the turbulence level is high. The curved wall jet
appears to have a higher velocity gradient near the surface than the plane wall jet
(figure 6b), but this is a consequence of the scaling and it does not suggest that the
skin friction coefficient cf is higher. The measurements near the surface agree with
previous experiments by Fujisawa & Kobayashi and by Wilson & Goldstein (1976),
although the last two authors do not even comment on the matter of skin friction.
Supplementary investigation at 60◦ < θ < 120◦ indicated that the skin friction coef-
ficient is actually reduced compared to the plane wall jet. This is consistent with the
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Figure 6. A comparison between mean velocity profiles in the constant pressure region and the
plane wall jet. Scaled with the half width y2 and Umax.

observations made in a thin boundary layer evolving over a slightly convex surface
(unpublished work by R. N. Merony referred to in Bradshaw 1969). It will become
apparent that this flow lacks the necessary conditions for self preservation and it is
not in a state of moving equilibrium as required by Townsend (1956).

As one moves farther downstream, into the adverse pressure gradient region, the
similarity of the mean velocity profiles fails (figure 7a). Between 140◦ < θ < 180◦ the
deviations are small and are mostly perceptible in the inner region when viewed on
an expanded scale (figure 7b). Beyond θ > 180◦, the thickness of the inner boundary
layer increases rapidly with increasing θ, moving the location of the maximum velocity
ymax outward relative to the local width of the jet y2. A new lengthscale (y2 − ymax) is
required to maintain an approximate self similarity in the outer part (i.e. y−ymax > 0)
of the mean velocity profile; however, there is no obvious length capable of scaling
the inner part of the flow (figure 7c).

The changes occurring in the mean velocity distribution of the inner region increase
as the flow approaches the separation location. The adverse pressure gradient shown
in figure 8 contributes to this lack of self similarity, as it often does in a turbulent
boundary layer. For example, the shape factor H , ratio of local displacement thickness
to local momentum thickness, of the inner boundary layer responds to the adverse
pressure gradient by increasing from H = 1.3 at θ ≈ 180◦ to H = 2.1 at θ = 220◦. By
extrapolating this curve (figure 8) to θ = 240◦ the value of H near separation would
be very close to the accepted values for turbulent boundary layers.
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4. Length and velocity scales
The decay of the maximum velocity in the jet and its radial rate of spread in

the direction of streaming are first plotted using the traditional scaling (e.g. Launder
& Rodi 1981) in figure 9 and compared with corresponding data obtained for
the plane wall jet. The arc length Rθ represents also the distance x because the
boundary-layer coordinates follow the surface. This distance is measured from a
virtual origin θ0 obtained by extrapolating the data in the self similar region. Since
the maximum velocities in plane wall jets decay approximately as Umax ∝ x−1/2, the
ratio of (Ujet/Umax)

2 could have been expected to vary almost linearly with x, or
rather with Rθ, as indicated by the solid lines obtained for the plane wall jet at
corresponding Rej = Ujetb/ν (figure 9a). The maximum velocities in the curved wall
jet decrease much faster with x than in the plane flow. This must be accompanied by
an increased rate of spread (figure 9b), otherwise the momentum loss to skin friction
would have been unreasonable. It is clear that traditional scaling using the slot width
as the reference lengthscale does not collapse the data onto a single universal curve
for different slot widths. Since the mean velocity profiles are self similar, provided
θ 6 180◦, the local kinematic jet momentum can be obtained:

J = U2
max y2

∫ ∞
y/y2=0

(
U

Umax

)2

d

(
y

y2

)
︸ ︷︷ ︸

const

= 0.78U2
max y2 (1)

from the product of the length and velocity scales. The decay of J in the direction of
streaming is very gradual. In the constant surface pressure region (40◦ 6 θ 6 120◦),
the skin friction appears to have little or no influence on the evolution of the flow,
although the presence of the solid surface affects the scale of the large eddies which
are smaller than in a corresponding free jet.

It was recognized by Narasimha, Narayan & Parthasarathy (1973) and reinforced
by Wygnanski et al. (1992) that the details of the flow through the nozzle cannot
influence the overall behaviour of the turbulent wall jet far downstream of its origin.
Thus the dimension of the nozzle becomes irrelevant. The flow in the absence of
curvature scaled with the initial, kinematic momentum flux J and the fluid viscosity
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streaming. Scaling based on the jet exit velocity Ujet and the slot width b.

ν, rather than the slot width b and the exit velocity Ujet . The length and velocity
scales derived from these two independent parameters are ν2/J and J/ν, respectively.
The practical demonstration that the flow is indeed independent of the conditions
at the nozzle was provided by Zhou, Rothstein & Wygnanski (1992) who collapsed
all the available mean flow data on wall jets onto universal curves independent of
Rej = Ujet b/ν. It should be noted that the new length and velocity scales based on J
and ν define a Reynolds number which is equal to unity regardless of the conditions
at the nozzle.

The evolution of an incompressible wall jet around the circular cylinder of radius
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R, depends on J , ν and on R. The significance of the additional lengthscale R is
apparent when the ratio of y2/R is no longer small. In this instance, the boundary-
layer approximation may no longer apply, imposing a new limitation on the slot
width (i.e. b/R � 1). Assuming that the relevant length and velocity scales in the
present flow are: R and (J/R)1/2, respectively, then the relevant Reynolds number,

ReN ≡ (J/R)1/2R

ν
=

(JR)1/2

ν
, (2)

instead of being a constant as it was in the plane wall jet. Thus, the relevance of
the above mentioned ReN is clearly demonstrated by plotting y2/ν

2 J and Umax/J/ν
versus the dimensionless distance from the nozzle Rθ/ν2/J (figure 10), since the data
fall on separate curves characterized by ReN . In the limit of a very thin wall jet
or very large R, all curves collapse onto a line representing the plane flow. The
ratio b/R is of no significance within the bounds of b/R considered here since each
curve representing a constant Re contains three values of b/R < 0.07. These figure
suggest that each dependent dimensionless variable in this flow is a function of two
independent parameters: θ and ReN (see also Newman 1961).

The dimensionless local width of the flow, y2/R and the concomitant maximum
velocity Umax/(J/R)1/2 are plotted against the angular distance from the virtual origin
for each case (i.e. for various Re and b/R) and found to collapse onto a single curve,
suggesting that the flow is independent of Re provided the latter is larger than 19×103

(see figure 11). The data are well represented by

y2

R
= 0.11(θ − θ0)

1.46,

Umax

(J/R)1/2
= 3.35(θ − θ0)

−0.76,

 (3)

in the constant pressure region corresponding to 40◦ 6 θ − θ0 6 120◦ and may in
most instances be extrapolated to θ − θ0 = 180◦. The results of Wilson & Goldstein
are also plotted in figure 11 for comparison. The agreement between these two sets
of data is good up to θ− θ0 = 120◦, the deviations at larger distances from the nozzle
are attributed to the exterior settling chamber used by these investigators. Equation
(3) yields

y2U
2
max

J
= 1.23(θ − θ0)

−0.06, (4)

and the self consistency of the similarity assumption comes out when one substitutes
for J = 0.78U2

max y2 from equation (1) to give

1.28 ≈ 1.23(θ − θ0)
−0.06. (5)

5. Surface pressure
The pressure differential across the flow balances the centrifugal force generated

by the wall jet as it follows the circular path along the surface of the cylinder.
Boundary-layer equations may describe the flow adequately provided y2/R � 1. The
mean momentum equation in the direction normal to the streamlines is:

∂

∂y

[
P

ρ
+
v
′2

2

]
=

U2 + u
′2

R(1 + y/R)
, (6)
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Figure 10. (a) The decay of the maximum velocity and (b) the radial rate of spread in the
direction of streaming. Scaling based on the kinematic momentum flux J and the fluid viscosity ν.

which upon integration and normalization gives

cp =
(P∞ − Ps)R

1
2
ρJN

=
2

JN

∫ ∞
0

(U2 + u′2) dy

1 + y/R
. (7)

This normalization was chosen since to first-order of approximation JN = (2b/ρ)
(P0 − P∞) and P0 is the total pressure in the settling chamber. The integral on the
right-hand side of the equation represents J and thus, under ideal conditions (when
JN = J), cp = 2. One may quickly assess the value of cp in the fully developed,
self-similar region (40◦ 6 θ 6 120◦) by assuming the jet to be thin (i.e. y/R → 0) and
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Figure 11. (a) The decay of the maximum velocity and (b) the radial rate of spread in the direction
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neglecting the contribution of the turbulence intensity to the total momentum flux.
In this case, cp = 1.56U2

max y2 = 1.92(θ − θ0)
−0.06, when the appropriate scaling values

are substituted from equation (3). The complete right-hand side of equation (7)
is plotted in figure 12. The agreement between this calculation and the measured
cp is reasonable up to θ = 160◦. At larger azimuthal angles, the validity of the
boundary-layer approximation becomes questionable and higher-order terms have to
be included.



On a turbulent wall jet flowing over a circular cylinder 15

Mean curve for high Re
Newman (1961)

Mean curve for high Re
Fekete (1963)

1.92 (h–h0)–0.06
2.0

1.6

1.2

0.8

0.4

0
1 2 3 4 5

150° 250°100°50°

h–h0

( p∞– ps) R
( p0– p∞) b

Figure 12. Surface pressure coefficient cp for various ReN .

Newman (1961) derived the scaling parameters for the surface pressure by using
dimensional analysis, assuming the flow to be incompressible and governed by

(P0 − Ps), b, R, ρ, ν,
where ν is the kinematic viscosity of the fluid.

Thus, the surface pressure coefficient cp, at an angular position θ, is a function of
these parameters. Newman realized that at some distance from the nozzle the flow
will be independent of the separate parameters (P0 − Ps) and b, but will depend on
their product instead [i.e. (P0 − P∞) b = 2ρJN] leading to

cp =
(P∞ − Ps)R
P0 − P∞) b

= f

[
θ,

(
(P0 − P∞)Rb

ρν2

)1/2
]
, (8)

where Newman’s Reynolds number ReN = ((P0−P∞)Rb/ρν2)1/2 contains the product
of the two lengthscales. The same quantity appeared in conjunction with the scaling
of the mean velocity distribution in this flow (see equation (2)). For large values
of this Reynolds number, cp should also become independent of ReN as it did in
the case of the mean velocity. Thus, the surface pressure becomes merely a function
of θ. It remains to be seen whether the independent ratio b/R, which was thus far
neglected, is of any significance. In order to answer this question, the slot width b
and the initial jet velocity Ujet were varied in a manner that maintained constant
Reynolds numbers (ReN 19 000, ReN 33 000 and ReN 51 000) for different ratios b/R.
The symbols representing the nine independent experiments are given in table 1. The
surface pressure distributions along the cylinder for tabulated inflow conditions are
plotted in figure 12 and compared with former experiments by Fekete and Newman.
The results of Fekete are surprising since they were obtained on the same cylinder 30
years earlier.
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Slot width
(mm) b/R ReN19 000 ReN33 000 ReN51 000

2.34 0.023 ◦ � 4
3.95 0.039 • � N
6.95 0.068 ⊗ �× 4×
Table 1. Symbols representing the nine independent experiments

There is a consistent difference of approximately 0.04 cp,max between the present
results and those of Fekete (Newman 1969), Newman’s (1961) results are different;
however, the differences between the present data and Newman’s is attributed to
the different settling chamber geometries. An exterior settling chamber, used in
Newman’s earlier experiment might have generated an adverse pressure, reducing cp
and its dependence on θ. Our observed pressure coefficient is very nearly constant
between θ = 40◦ and θ = 120◦ and then decreases rapidly to the surrounding pressure.
At θ ≈ 220◦ the pressure on the surface is atmospheric and the flow breaks away
from the surface.

The surface pressure coefficient in the constant pressure region (40◦ 6 θ 6 120◦)
becomes independent of Rej = Ujet b/ν for Rej > 5 × 103. This is consistent with
other observations made on the dependence of the plane wall jet on Rej (Wygnanski
et al. 1992). Since the pressure coefficient near the slot is very sensitive to entrainment,
it is also sensitive to Rej and to the detailed geometry of the nozzle in relation to
the circular cylinder. Both variables determine the transition location in the initial
mixing layer formed between the constant velocity stream and the ambient fluid, and
affect the initial value of cp. Enormous pressure oscillations as well as fairly low,
absolute values of the mean cp were observed near thin slots (see data corresponding
to b/R = 0.023 in figure 12). Large slot widths generated larger initial values of
cp which were maintained throughout the constant pressure region. Since the rate
of entrainment of the mixing layer is higher than in the fully developed wall jet,
a larger slot generates a larger absolute value of cp at a constant ReN , provided
that Rej > 5000. Nakaguchi (1961) attributed the high pressure coefficient which he
observed near the slot to the existence of a separation bubble; however, no separation
bubbles were detected in the present study. Surface visualization was used initially;
more recently, however, the fluid emerging from the slot was seeded with smoke
particles and a two dimensional laser sheet illumination was used. No bubble was
observed near the slot. The scatter apparent in figure 12 can be reduced by recalling
that JN is only an approximation to the jet momentum, because the flow expands
from the settling chamber to the local static pressure prevailing near the nozzle, Ps.
Thus, if J = (2b/ρ)(P0 − Ps), then the modified pressure coefficient

[cp]M =
(P∞ − Ps)R

1
2
ρJ

=
(P∞ − Ps)R
JN(1 + cpb/R)

=
cp

(1 + cpb/R)
(9)

reduces the scatter but does not eliminate it entirely.

6. Skin friction and mean momentum balance
The skin friction coefficient was determined from the slope of the mean velocity

profile close to the surface. This measuring technique was adopted earlier for the
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plane wall jet. It is based on 6–10 data points taken in the region where the velocity
gradient is linear. In the present case, it allowed a re-examination of the character
of the velocity distribution prior to separation. Specifically, it was searched for the
occurrence of inflection points in the adverse pressure gradient region seen prior
to the mean separation location. When the skin friction is normalized by the local
maximum velocity τw/ρU

2
max it appears to increase with increasing θ attaining a

maximum value around θ = 140◦ (figure 13b). This behaviour stems from changes
in Umax rather than in τw . Using JN/R for normalization indicates that cf decreases
monotonically with increasing distance from the nozzle (figure 13c). The centrifugal
forces associated with the convex curvature reduce cf . The cf measured here is one-
third of the corresponding cf measured in the plane wall jet configuration (figure
13d).

The consistency of the measurements, the validity of the boundary-layer approxi-
mation and the two-dimensionality of the flow may now be assessed by constructing
a control volume around the cylinder and checking the mean momentum balance.
Starting at θ = 40◦, where similarity of the mean flow was observed, and considering
the constant pressure region first (i.e. going around a quarter of the circle up to
θ = 130◦) yields the following balance in the vertical direction (see figure 14):[∫ ∞

0

{
(cp J/2R)−U2

}
dy

]
θ=130◦

+ 1
2
J

∫ π/2

0

(
cp cos θ +

R

b
cf sin θ

)
dθ = 0, (10)

the sum of all four terms computed from the data amounts to (0.036 J) proving the
overall consistency of the measurements and the two-dimensionality of the flow. The
contribution of the skin friction to this balance is minimal 0.015 J and therefore this
momentum budget cannot be used as a proof of reliability of this data. This exercise
may be repeated between θ = 40◦ and 220◦ by assuming that the jet enters and leaves
the control volume in the horizontal direction giving

1
2
J

∫ π

0

(
Cp cos θ +

R

b
Cf sin θ

)
dθ = 0. (11)

This assumption is faulty because the vertical component of the friction force is
much smaller than the pressure force, giving an imbalance of approximately 0.54 J . A
momentum budget in the horizontal direction yields a comparable imbalance of 0.65 J
suggesting that at θ = 220◦ the mean momentum of the jet is inclined to the surface of
the cylinder at approximately θ = 40◦. This is confirmed by flow visualization (figure
15). The data is self consistent but it does not explain the mechanism responsible for
the sudden broadening of the inner flow (figure 7c) leading to its separation from the
surface.

Streamlines calculated by assuming that the flow is two-dimensional are plotted in
figure 16(a). The onset of strong divergence appears around θ = 180◦ implying a rapid
deceleration in the direction of streaming and an increase in the normal component
of velocity invalidating the boundary-layer approximation. The integrated component
of the jet momentum in the direction normal to the surface is also plotted in figure
16(b). It indicates a rapid increase in the y-component of momentum at θ > 180◦.
This corroborates the findings of the control volume analysis and coincides with the
region in which the value of the shape factor H increased rapidly (figure 8). The
earliest indicator for the failure of the boundary-layer approximation is the width
of the flow. Although y2 represents approximately half of the jet width, it becomes
comparable to R long before the onset of the rapid flow divergence. In fact y2 = R
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Figure 13. (a), (c) Streamwise component of velocity in the immediate vicinity of the surface.
(b), (d) A comparison of the skin friction coefficient cf in the curved and in the plane wall jet.

around θ = 180◦ (figure 16a). Near the nozzle (θ < 40◦), the entrainment is so strong
as to generate an appreciable negative Jnormal .

7. Turbulent intensities and Reynolds stress
The streamwise component of the turbulence intensity is plotted in figure 17(a)

for five, equally spaced, values of θ ranging from θ = 40◦ to 200◦. Data ob-
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Figure 14. Flow direction calculation from mean momentum balance.

tained for the plane wall jet at comparable slot Rej are also plotted in figure
17(a) for comparison. The results are normalized by the same local parameters
as the mean velocity profiles, the local maximum velocity Umax and the half-
width of the jet y2. The distributions of u′ are characterized by two high-intensity
regions: one located in the outer part of the flow, around y/y2 = 0.7 and the
other near the surface at 0.02 < y/y2 < 0.04, depending on the location in the
direction of streaming. At θ = 40◦, the high-intensity region near the surface is
non-existent, but otherwise the distribution of u′ is comparable to the distribution
in the plane wall jet. However, as θ increases, the intensity of u′ increases and
exceeds the maximum intensity measured in the plane wall jet by 60% around
θ = 200◦. The high-intensity region near the surface evolves slowly with increasing
θ. The maximum level of u′ observed near the surface is less than the level of u′max
measured in the outer flow, except around θ = 160◦ where the two intensity peaks
are comparable. At θ = 200◦ the maximum u′ intensity measured near the wall is
smaller again and the y-location at which it occurs is substantially further away
from the surface than at θ 6 160◦ (one should recall that u′ is plotted vs. y/y2 and
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Figure 15. Flow visualization in the separation region.

that y2 increases rapidly with θ when θ > 180◦). There is a correlation between the
production of turbulent energy near the surface

(
u′v′(∂U/∂y)

)
and the maximum

intensity of u′ observed. Some of it is masked by normalizing the turbulence by local

Umax (see also figures 13(c) and 13(d)); however, plotting
(
u′2/J/R

)1/2
does not alter

the distribution of (u′)1/2 with y/y2. The distribution of (u′2)1/2/Umax with y/y2 is
plotted on an expanded scale in figure 17(b). The radial component of the velocity

fluctuations
(
v′2
)1/2

/Umax is initially comparable with its counterpart on the flat plate,
but its magnitude doubles over the range 40◦ 6 θ 6 200◦ (figure 17c). The radial

location at which the local value of
(
v′2
)1/2/

Umax is maximum decreases with respect
to y2 with increasing θ. Therefore, at θ = 40◦ y(v′=max )/y2 = 0.7 while at θ = 200◦
y(v′=max)/y2 = 0.35. It might be expected that the y-location at which u′v′ attains
its maximum will also decrease relative to y2, at large values of θ; however, this
was not the case, as may be noted in figure 17(e). Between θ = 40◦ and θ = 200◦:[(
u′2
)1/2/

Umax

]
max

increased by a factor of 1.65,
[(
v′2
)1/2/

Umax

]
max

increased by a

factor of 2 and
∣∣u′v′/U2

max

∣∣
max

by a factor of 2.4; however, Umax decreased by a factor
of 4 in this ∆θ interval. The ratio between (u′/v′)max decreased from 1.4 at θ = 40◦, to
1.08 at θ = 160◦. The maximum of the u′v′ correlation (figure 18) exceeds 0.53 which

is larger than in the plane wall jet (where u′v′
/(
u′2
)1/2(

v′2
)1/2

= 0.49) and significantly
larger than in the turbulent boundary layer over a flat plate. The radial location at

which u′v′
/(
u′2
)1/2(

v′2
)1/2

attains its maximum value increases with θ from being at
y/y2 = 0.5 at θ = 40◦ to y/y2 = 1 at θ = 160◦. Since these observations are peculiar
to this flow they suggest that surface curvature, and the centrifugal force generated
by it, alter the turbulent structure.
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The Reynolds stress was calculated from the momentum equation in the direction
of streaming (equation (12)) which included the pressure gradient term obtained from
the normal momentum equation (equation (13)) but neglected the viscous term:

U
∂U

∂s
+

(
1 +

r

R

)
V
∂U

∂r
+
UV

R
≡ ∂U2

∂s
+

(
1 +

r

R

)
∂UV

∂r
+ 2

UV

R

= −1

ρ

∂p

∂s
− ∂u

′2

∂s
−
(

1 +
r

R

)
∂u′v′

∂r
− 2

u′v′

R
, (12)

U
∂V

∂s
+

(
1 +

r

R

)
V
∂V

∂r
− U2

R
≡ ∂UV

∂s
+

(
1 +

r

R

)
∂V 2

∂r
+
V 2 −U2

R

= −
(

1 +
r

R

)
1

ρ

∂p

∂r
− ∂u′v′

∂s
−
(

1 +
r

R

)
∂v

′2

∂r
− v

′2 − u′2
R

. (13)

Although the inertia terms contributed the largest share to the calculated u′v′, the
contribution of the pressure gradient was not negligible even when the surface
pressure indicates that

(
∂p/∂x

) ⇒ 0. Neglecting the pressure gradient term in

these calculations would overestimate the maximum value of u′v′ by more than
10% in the range of θ considered. The calculated pressure coefficients within the
flow are not shown because they could not be compared with any measurements.
The viscous terms, on the other hand, are truly negligible except in the immedi-
ate vicinity of the surface. The results agree well with the measurements up to
and including θ = 120◦ (figure 19a). They indicate that the mean flow is two-
dimensional up to this θ and that the measurements of velocity are fairly accurate.
The agreement between measured and calculated u′v′ is not only a proof of data
consistency but it also validates the boundary-layer approximation within this re-
gion. Another measure of the two-dimensionality of the flow is the ratio between



24 R. Neuendorf and I. Wygnanski

120

90

60

30

0
–5 0 5 10 15 20

80°
100°
120°
Calculation

y (mm)

u′v′ (m2 s–2)
2.0

1.5

1.0

0.5

0
–0.03 –0.02 –0.01 0 0.01 0.02 0.03

y
y2

2.0

1.5

1.0

0.5

0
–1.0 –0.5 0.5 1.00

y
y2

Per cent

(a)

(b)

(c)

u′v′
U2

max

at 140°

u′w′
U2

max

at 140°

W
Umax

at 140°

..

.

u′v′/U2
max , u′w ′/U2

max
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the measured u′w′ and u′v′. Both quantities are plotted in figure 19(b) for measure-
ments made at θ = 140◦. Even the mean spanwise velocity W was measured at that θ
(figure 19c) and was found to be negligible.

8. Conclusions
It is well known that adherence of jets to nearby surfaces is caused by entrainment.

It appears that the separation of jets from curved surfaces can also be attributed
to entrainment which destroys the sensitive balance between the centrifugal and
the pressure forces normal to the mean flow direction. The process of separation is
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complex, the centrifugal instability generates large eddies and enhances the turbulence
level well beyond the norm in comparable plane wall jets. The large eddies, which
are most effective in entraining external fluid, result in a rapid broadening of the
jet, its deceleration and the generation of a mean velocity component normal to the
surface. When the normal velocity component becomes comparable to the tangential
one, the flow separates. The present measurements indicate that the boundary-layer
approximation, used to describe turbulent jets of all kinds, fails (a long time) before
the onset of separation. This suggests that entrainment acts like a double-edged
sword, a threshold value is required for a jet to adhere to a surface, but it should be
kept to a minimum in order to prevent or delay its separation from the surface.

The project was sponsored in part by AFOSR under grant F4962-096-10187. The
apparatus was loaned to us by Professors B. G. Newman and G. I. Fekete from
McGill University. One of us (R. N.) started on this project owing to a cooperation
agreement between the University of Arizona and the Technical University Berlin.
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